Complexity in strongly correlated systems

Razvan Teodorescu T-13 and CNLS LANL

June 19, 2007

Complex systems: lots of data, few theories

• High- T_c superconductivity

- High- T_c superconductivity
- Nanostructures: electrons in 1D

- High- T_c superconductivity
- Nanostructures: electrons in 1D
- Fractional Quantum Hall effect

- High- T_c superconductivity
- Nanostructures: electrons in 1D
- Fractional Quantum Hall effect
- Glass transition localization

- High- T_c superconductivity
- Nanostructures: electrons in 1D
- Fractional Quantum Hall effect
- Glass transition localization
- Pattern formation in growth models

- High- T_c superconductivity
- Nanostructures: electrons in 1D
- Fractional Quantum Hall effect
- Glass transition localization
- Pattern formation in growth models
- "Structured" stochastic processes molecular biology

- High- T_c superconductivity
- Nanostructures: electrons in 1D
- Fractional Quantum Hall effect
- Glass transition localization
- Pattern formation in growth models
- "Structured" stochastic processes molecular biology

How to make a complex system – a recipe

• Take enough correlated constituents (preferably electrons);

- Take enough correlated constituents (preferably electrons);
- Add constraints (dimensionality) and/or interactions;

- Take enough correlated constituents (preferably electrons);
- Add constraints (dimensionality) and/or interactions;
- Add further symmetry constraints, according to taste;

- Take enough correlated constituents (preferably electrons);
- Add constraints (dimensionality) and/or interactions;
- Add further symmetry constraints, according to taste;
- Add disorder to mix everything well;

- Take enough correlated constituents (preferably electrons);
- Add constraints (dimensionality) and/or interactions;
- Add further symmetry constraints, according to taste;
- Add disorder to mix everything well;
- Enjoy!

How to make a complex system – a recipe

- Take enough correlated constituents (preferably electrons);
- Add constraints (dimensionality) and/or interactions;
- Add further symmetry constraints, according to taste;
- Add disorder to mix everything well;
- Enjoy!

(Do not try this at home)

Tasting the results

Tasting the results

Tasting the results

You know you have a complex system when ...

• The single-particle approximation fails

Tasting the results

- The single-particle approximation fails
- The equilibrium statistics may not exist

Tasting the results

- The single-particle approximation fails
- The equilibrium statistics may not exist
- The system is correlated over many scales

Tasting the results

- The single-particle approximation fails
- The equilibrium statistics may not exist
- The system is correlated over many scales
- The editor of your paper insists this is "new physics"

Tasting the results

- The single-particle approximation fails
- The equilibrium statistics may not exist
- The system is correlated over many scales
- The editor of your paper insists this is "new physics"
- If understood, the system would be really useful

Tasting the results

- The single-particle approximation fails
- The equilibrium statistics may not exist
- The system is correlated over many scales
- The editor of your paper insists this is "new physics"
- If understood, the system would be really useful

The physicist's approach:

The physicist's approach: playing with toys

The physicist's approach: playing with toys (and enjoying it)

The physicist's approach: playing with toys (and enjoying it)

 Construct theoretical models which capture universal features of different real systems

The physicist's approach: playing with toys (and enjoying it)

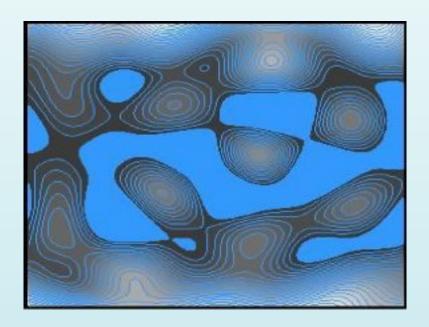
- Construct theoretical models which capture universal features of different real systems
- Free-boundary problems in correlated quantum systems:

The physicist's approach: playing with toys (and enjoying it)

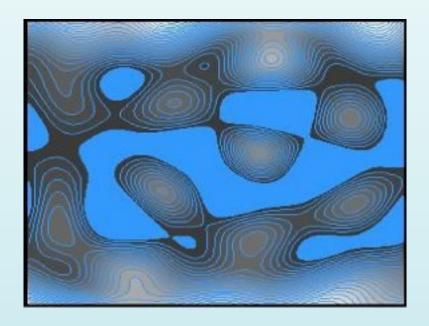
- Construct theoretical models which capture universal features of different real systems
- Free-boundary problems in correlated quantum systems:

System	Name	Use
2D electrons in magnetic field	Quantum Hall droplets	quantum information
2D frustated spin systems	glassy states	information theory
1D interacting electrons	nanostructures	nanotechnology
1D quantum magnets	spin chains	entanglement

Quantum Hall droplets



Quantum Hall droplets



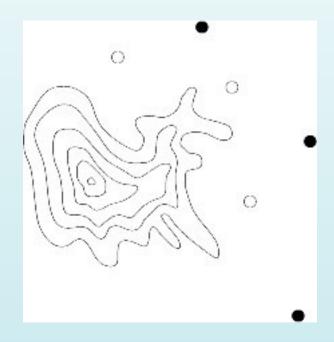
2D electrons in transversal magnetic field, and confining electrostatic potential (1985 and 1998 Nobel prizes)

June 2007

Quantum droplets

Complexity ...

Incompressible fluids ... with a twist



Elementary magnetic fluxes (tubes) infinitesimally deform the droplet.

June 2007

Topological exitations and quantum computing

Topological exitations and quantum computing

• Quantum computing is great, but ...

Topological exitations and quantum computing

• Quantum computing is great, but ... it cannot work

- Quantum computing is great, but ... it cannot work
- Local operations indistinguishable from fluctuations

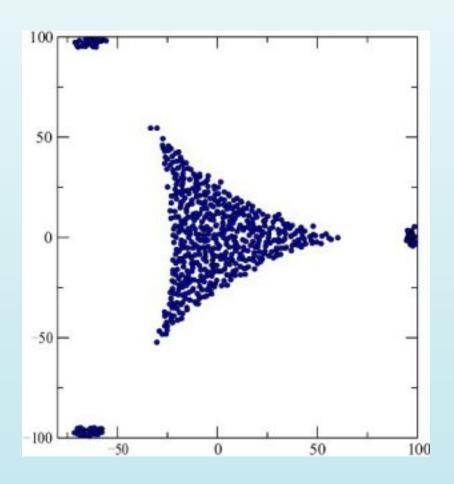
- Quantum computing is great, but ... it cannot work
- Local operations indistinguishable from fluctuations
- Turn on the lights = reset quantum computer ??

- Quantum computing is great, but ... it cannot work
- Local operations indistinguishable from fluctuations
- Turn on the lights = reset quantum computer ??
- Idea (Kitaev, Freedman): use topological exitations as states

- Quantum computing is great, but ... it cannot work
- Local operations indistinguishable from fluctuations
- Turn on the lights = reset quantum computer ??
- Idea (Kitaev, Freedman): use topological exitations as states
- Must first understand how droplet evolves

- Quantum computing is great, but ... it cannot work
- Local operations indistinguishable from fluctuations
- Turn on the lights = reset quantum computer ??
- Idea (Kitaev, Freedman): use topological exitations as states
- Must first understand how droplet evolves
- Problem becomes "stochastic electrostatics"

Quantum droplets as Coulomb charges



2D stochastic electrostatics = free boundary problem

2D stochastic electrostatics = free boundary problem

• Solve hydrodynamical problem:

2D stochastic electrostatics = free boundary problem

- Solve hydrodynamical problem:
- If P(z) is pressure, find boundary Γ such that

2D stochastic electrostatics = free boundary problem

- Solve hydrodynamical problem:
- If P(z) is pressure, find boundary Γ such that
- $\Delta p = 0$ outside, $\vec{V} \sim \vec{\nabla} p$ on Γ , p = 0 inside

2D stochastic electrostatics = free boundary problem

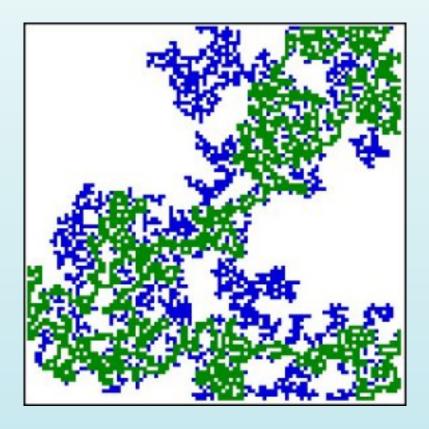
- Solve hydrodynamical problem:
- If P(z) is pressure, find boundary Γ such that

•
$$\Delta p = 0$$
 outside, $\vec{V} \sim \vec{\nabla} p$ on Γ , $p = 0$ inside



June 2007

2D spin systems



June 2007 10

The many facets of glass transition

• Some spins want to align parallel, others opposite

- Some spins want to align parallel, others opposite
- Consider some distribution of couplings

- Some spins want to align parallel, others opposite
- Consider some distribution of couplings
- Equivalent to K-Sat problem in information theory

- Some spins want to align parallel, others opposite
- Consider some distribution of couplings
- Equivalent to K-Sat problem in information theory
- Model for glassy states in statistical physics

- Some spins want to align parallel, others opposite
- Consider some distribution of couplings
- Equivalent to K-Sat problem in information theory
- Model for glassy states in statistical physics
- Open problem (since 1972)

- Some spins want to align parallel, others opposite
- Consider some distribution of couplings
- Equivalent to K-Sat problem in information theory
- Model for glassy states in statistical physics
- Open problem (since 1972)

Phases of 2D spin systems

• Find distribution of boundary between clusters

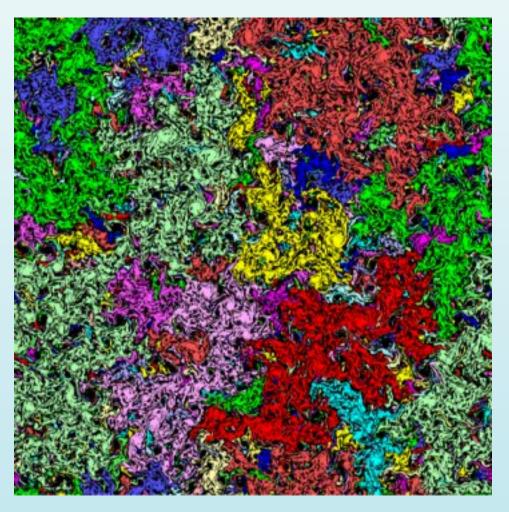
- Find distribution of boundary between clusters
- Free-boundary problem in 2D hydrodyamics

- Find distribution of boundary between clusters
- Free-boundary problem in 2D hydrodyamics
- Again "stochastic electrostatics"

- Find distribution of boundary between clusters
- Free-boundary problem in 2D hydrodyamics
- Again "stochastic electrostatics"
- Falkovich, Celani, Boffeta, Bernard (2006)

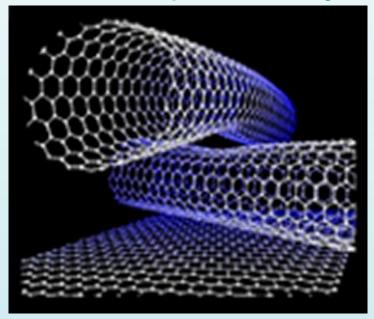
- Find distribution of boundary between clusters
- Free-boundary problem in 2D hydrodyamics
- Again "stochastic electrostatics"
- Falkovich, Celani, Boffeta, Bernard (2006)

Spin systems and hydrodynamics

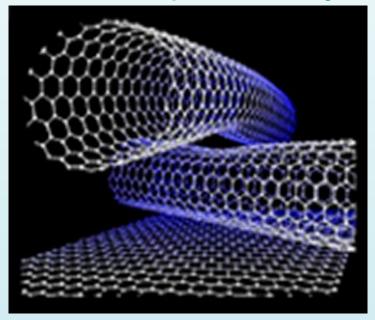


June 2007

Nanostructures: 1D quantum hydrodynamics

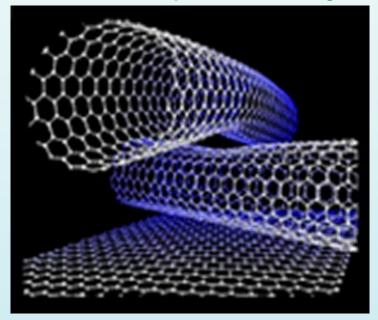


Nanostructures: 1D quantum hydrodynamics



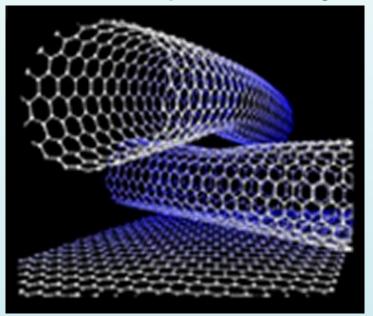
• Strongly interacting electrons in 1D

Nanostructures: 1D quantum hydrodynamics



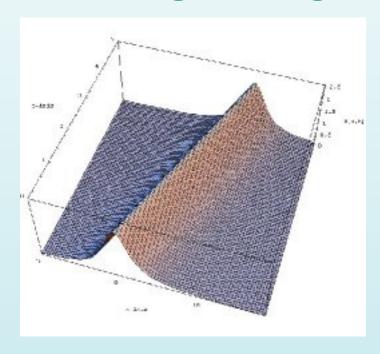
- Strongly interacting electrons in 1D
- Behave like bosons (Luttinger, Tomonaga, Larkin)

Nanostructures: 1D quantum hydrodynamics

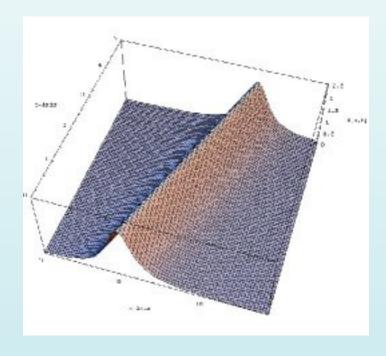


- Strongly interacting electrons in 1D
- Behave like bosons (Luttinger, Tomonaga, Larkin)

Beyond Tomonaga-Luttinger theory

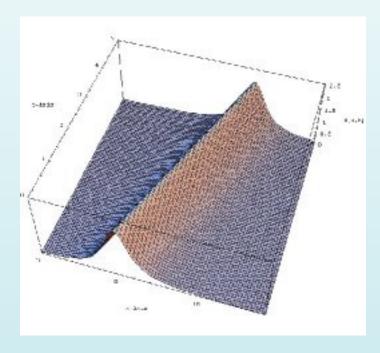


Beyond Tomonaga-Luttinger theory



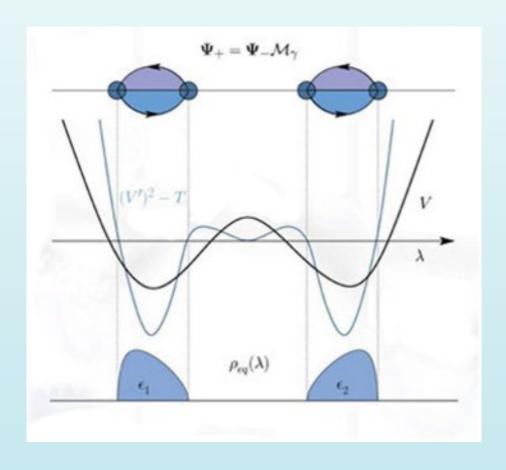
 Exitations of electronic fluid are like hydrodynamic shocks (moving boundary)

Beyond Tomonaga-Luttinger theory



 Exitations of electronic fluid are like hydrodynamic shocks (moving boundary) Quantum magnets Complexity ...

Entanglement in 1D - free boundary again !



Solving the quantum free boundary problem

• Ingredients for the solution:

- Ingredients for the solution:
- 1D and 2D Random Matrix Theory

- Ingredients for the solution:
- 1D and 2D Random Matrix Theory
- Eigenvalues define "clusters"

- Ingredients for the solution:
- 1D and 2D Random Matrix Theory
- Eigenvalues define "clusters"
- ullet N "particles", each of "size" ℓ^2
- Double-scaling limit $N \to \infty, \, \ell \to 0, \, N\ell^2 = \text{constant}$

- Ingredients for the solution:
- 1D and 2D Random Matrix Theory
- Eigenvalues define "clusters"
- ullet N "particles", each of "size" ℓ^2
- Double-scaling limit $N \to \infty, \ \ell \to 0, \ N\ell^2 = \text{constant}$
- Double-scaling (continuum) limit gives smooth interface dynamics

Solutions

Complexity ...

- Ingredients for the solution:
- 1D and 2D Random Matrix Theory
- Eigenvalues define "clusters"
- ullet N "particles", each of "size" ℓ^2
- Double-scaling limit $N \to \infty, \ \ell \to 0, \ N\ell^2 = \text{constant}$
- Double-scaling (continuum) limit gives smooth interface dynamics

Further developments

 Random Matrix Theory approach – related to algebraic geometry, integrable differential equations, topological field theory

- Random Matrix Theory approach related to algebraic geometry, integrable differential equations, topological field theory
- Allows "particle" representations in continuum problems and viceversa

- Random Matrix Theory approach related to algebraic geometry, integrable differential equations, topological field theory
- Allows "particle" representations in continuum problems and viceversa
- Two of four 2006 Fields medals (Okunkov and Werner)

- Random Matrix Theory approach related to algebraic geometry, integrable differential equations, topological field theory
- Allows "particle" representations in continuum problems and viceversa
- Two of four 2006 Fields medals (Okunkov and Werner)